

12 Chapter

Business Rules Scripting

NOTE: This chapter is published as a preview of our upcoming book on
Enterprise and Cloud Database Development with Data Abstract for
Xcode. It should be considered a first draft, and may be subject to
change and revisions before final publication. This current draft is based
on the “May 2011” releases of Data Abstract and Relativity Server.
© RemObjects Software, LLC 2011. All rights reserved. Written by marc hoffman.

In the previous chapter, you learned all about Schemas and how they
contain the information your middle-tier server needs to know how to
make data available to clients and – if necessary – to abstract the
underlying physical data model in the database or databases from what is
exposed to the clients. In this chapter, we’ll look at the one remaining
piece of the puzzle necessary for creating a complete middle tier:
Business Logic, and more specifically, Business Rules Scripting.

What is Business Rules Scripting?

As we already discussed in previous chapters, and will delve into more
deeply in Part Three, one of the central features of a middle-tier server is
that it retains complete control over how client applications access data,
what data particular clients are allowed to access, and how they are
allowed to modify it. Business Rules Scripts are one way for Data
Abstract middle-tier servers to define the business logic and implement
rules, constraints and secondary logic that needs to take place in the
middle tier for safe data access. This is done through snippets of
JavaScript code that talk to a platform-agnostic API provided by Data
Abstract and Relativity Server in order to inspect, modify or reject data
requests and data updates received from the client.

CHAPTER 12: Business Rules Scripting 2

When creating custom Data Abstract servers (a topic that is beyond the
scope of this book, but something we touch on briefly in Appendix E),
business rules scripting is only one of two options for implementing
business logic, since custom servers can also contain custom code
written using the development platform chosen for the server (typically a
.NET/Mono language such as C# or Oxygene). However, when hosting
your middle tier in Relativity Server, scripts are the sole means for
expressing business logic.
In theory, schemas distinguish between two types of business rules
scripts: scripts that run inside the server and scripts that get transferred
to and will run on the client. However, Apple’s current App Store
Guidelines do not permit apps to download and execute custom code
(including script code), so client-side scripting is not currently supported
for iOS development.

Server Side Scripts

Server-side scripting is the most important side of business rules scripts,
and used to globally enforce data integrity on the server. One of the
tenets of a secure multi-tier architecture is to have the middle tier validate
all data access and ensure the data integrity, and never solely rely on the
client application to submit proper data. A secure middle tier needs to
cope with bad data received from buggy or malicious clients and ensure
that no invalid data gets past its business rules checks. Among other
infrastructure provided by the Data Abstract middle tier itself, server-side
business rules should perform this task.
Scripts are stored within the Schema and developed within Schema
Modeler. Written in JavaScript (a.k.a. ECMAScript), these can contain just
about any logic that can be expressed in that language; they can, for
example, define custom functions and classes, if needed, or use any
standard JavaScript code constructs or APIs. The main entry points for
business rules scripts are a set of well-defined events that Data Abstracts
allows the scripting code to handle by implementing functions. Data
Abstract also provides an API that scripts can use to interact with the
system, query data, etc. (comparable to how the scripting engine of a
web browser exposes an API for working with the document model of the
HTML page the browser is showing).

CHAPTER 2: A Simple Client	 3

There are three levels at which the middle tier provides events that can be
handled.

• Some events are associated with specific objects within the
schema and their handlers should be written on a per-object basis.
For example, one of the most common events to be handled is
beforeProcessDeltaChange(), which gets called before a particular
change gets applied to the database; this event is most commonly
handled per-table, with an event handler that performs checks that
pertain to the table in question.

• Other events are specified globally for the entire schema. For
example, the beforeCommit() event is fired before a transaction is
committed to the database. Since transactions can span multiple
different tables, there is little sense in implementing
beforeCommit() for each table; instead, the event has one handler
that applies to the entire schema.

• Finally, there is a set of events that is global to an entire domain in
Relativity Server, even if that domain contains multiple Schemas.
For example, the afterLogin() event is called after a client has
authenticated itself with the server.

We will be looking at these events and this API in far more detail
throughout the course of this chapter, and see how to achieve many
common tasks through scripting. A thorough overview of all the events
and the entire scripting API provided by Data Abstract can also be found
online at http://remobjects.com/wiki/Business_Rules_Scripting_API.

Editing Scripts in Schema Modeler

Schema Modeler provides two places where scripts can be added to a
schema.
The root “SCHEMA” node provides an area for scripts and event handlers
that will apply to the entire schema, regardless of what objects the events
may pertain to. This is the place to implement events that are not tied to a
specific table (such as the afore-mentioned beforeCommit()), but you can
also put handlers for table-specific events in this area; these event
handlers would then trigger for any table in the schema. For example, if
you implemented a handler for beforeProcessDeltaChange() here, it

CHAPTER 12: Business Rules Scripting 4

would be called for any change to any of the tables in the schema. Your
event handler code would need to take this into account, for example by
checking the name of the table and adjusting its checks accordingly.

Figure 12-1: Schema-wide Events

Each Data Table and Command node also has an area for writing event
handlers that pertain to only one specific object. For example, if you
implemented a handler for beforeProcessDeltaChange() under the Clients
table, it would only trigger for changes to Customers, but not for changes
made to – say – Orders. This allows you to write more to-the-point and
table-specific checks.

CHAPTER 2: A Simple Client	 5

Figure 12-2: Per-Data Table Events

Attached to the bottom of each script area you will find two buttons. The
right-most button, titled “Add Event”, will open a popup menu listing all
the event handlers that are applicable to the current context. Select an
event name from the list, and Schema Modeler will automatically add an
event handler body to the script (or, if a handler for the event already
exists, jump to the existing code block). The second button, titled
“Validate” can be used to check the script for syntactical errors. (But note
that since JavaScript is a very dynamic language, errors can still occur at
runtime when the script is being executed, even if the syntax check
succeeded. Thorough testing of your business rules scripts before
deployment is important – more on that toward the end of this chapter)

CHAPTER 12: Business Rules Scripting 6

Figure 12-3: Scipt Editor Tasks

The Scripting API

Apart from the general JavaScript syntax and JavaScript’s standard
object model (both of which are not the subject of this book, but can be
found explained elsewhere; Appendix F provides a few references to
suggested reading) there are essentially two areas that make up the API
provided by Data Abstract and Relativity. On the one hand, there are the
event handlers we already briefly touched upon in the previous sections
of this chapter. There really is no need to “learn” all the different event
handlers (there’s about 25 of them), as Schema Modeler makes it easy to
add stubs when necessary. The second and more comprehensive part of
the API is the object model provided by Data Abstract. Some of these
objects will be available globally, while others will be passed in as
parameters to your event handlers. Let’s have a brief look at what’s
available.
The Events can roughly be grouped into six categories:

• Transactions. These are schema-wide events that allow you to be
notified and participate in the transaction management done by
Data Abstract. These are onCreateNewTransaction(),
beforeCommit(), afterCommit() , beforeRollback() and
afterRollback(). The names are pretty self-explanatory – the first
event notifies that a new transaction has been created, while the
remaining four events trigger before or after a transaction is either
committed or rolled back.

• Deltas. These events deal with the handling of changes or groups
of changes received form a client, and can, for example, be used
to inspect or validate changes in order to approve or reject them.

CHAPTER 2: A Simple Client	 7

These include beforeProcessDelta(), afterProcessDelta(),
beforeProcessDeltaChange() and afterProcessDeltaChange().

• Data Requests. These events get triggered when clients request
access to data. They are beforeGetData(), afterGetData() and
onValidateDataTableAccess().

• Command Requests. These events trigger when clients try to
execute data commands (a topic we’re not covering in this book),
and are beforeExecuteCommand(), afterExecuteCommand() and
onValidateCommandAccess().

• Error Handling. The onProcessError() event is triggered
whenever a delta change is rejected; it allows the scripting code to
react to such failures.

• Finally, there are Relativity Server-specific events, including
afterLogin(), beforeLogout() and afterLogout().

A complete reference of all events, along with detailed descriptions and
documentation can be found online at http://
remobjects.com/wiki/Business_Rules_Scripting_Events.
The list of object types provided by Data Abstract Scripting can also be
grouped into a handful of categories:

• Connection information
• Schemas Metadata
• Deltas and Delta Changes
• Dynamic Where Clauses
• Local Data Adapter
• Session Management

As mentioned before, access to these objects is usually provided via
parameters passed into your event handlers (for example the
beforeProcessDelta() event, which will pass you the Delta object
representing the set of changes that will be processed), or are available
globally (for example the global session object, which gives you access
to the session data for the current client, or the local lda object that gives
you access to a Local Data Adapter you can use to query data). A

CHAPTER 12: Business Rules Scripting 8

reference of all object types as well as all global objects and functions is
also available online at the above-mentioned URL.
You will see all of this in more detail when we look at concrete examples.
So let’s write scripts for some common business rules tasks.

Validating Changes

The beforeProcessDelta() and beforeProcessDeltaChange() events can
be used to inspect, adjust and act upon changes received from the client
before those changes get applied to the database. What’s the difference
between these two events? A delta is a set of changes received from the
client in one batch, and essentially a group of individual delta changes. A
delta might contain only a single change, or it might contain multiple
related or unrelated changes to the same table. As a consequence, each
time a client sends a delta to the server, beforeProcessDelta() will be
called once, followed by separate calls to beforeProcessDeltaChange()
for each individual change.
function beforeProcessDelta(delta) {}
function beforeProcessDeltaChange(delta, change, wasRefreshed, canRemove) {}

For data validation, you will usually want to inspect each change
separately, so you have two choices: you can implement
beforeProcessDelta() and loop across all the changes in the delta
yourself, or you can implement beforeProcessDeltaChange() to handle
each change individually:
function beforeProcessDelta(delta)
{
 for (int j; j < delta.count; j++)
 {
 var change = delta[j];
 // Inspect “change”
 }
}

or
function beforeProcessDeltaChange(delta, change, wasRefreshed, canRemove)
{
 // Inspect ”change”
}

In both cases, change will be a DeltaChange object that gives you detailed
access to everything you need to know about the change received from

CHAPTER 2: A Simple Client	 9

the client. Let’s have a closer look at the members exposed by
DeltaChange.
The three boolean properties isInsert, isUpdate and isDelete let you
determine whether the change represents a new row created on the
client, a change to an existing row or a removal, respectively. Usually, you
will want to perform different sets of validation, depending on the change
type (after all, it makes little sense to check the consistency of fields in a
row slated to be deleted, but it might make sense to check if the user is
allowed to delete rows).
The newValues[] indexer give you access to the new (or changed) values
of the database row, allowing you to validate the data to see if the
changes are acceptable or not. Similarly, the oldValues[] indexer
contains the old values, as the client saw them before making the
change. Both of these indexers can be accessed by field name or index,
such as newValues[“Address”] to get a value by name, or newValues[3]
to get the value of the fourth (indexes start at 0, of course) field.
function beforeProcessDeltaChange(delta, change, wasRefreshed, canRemove)
{
 if (change.isUpdate)
 {
 if (change.newValues[“Address”] == “Happy St.”)
 fail(“Can’t move to Happy Street!”);
 }
}

It is important to realize that, to save network bandwidth, a delta change
will usually not include all the fields of the table, but only those fields that
have actually changed, as well as the Primary Key. For example, if the
client changed the “Address” field of a row in our customers table, the
delta change might contain the “ClientID” and of course the “Address”,
but it will not have a valid value for – say – the “Name”. To make more
complex validations easier and give access to the full row of data, two
additional indexers are provided: originalRow[] and finalRow[]. As the
names imply, originalRow[] gives your code access to the original data
in the row as it is found in the database at that point in time (for obvious
reasons, this is not available for new inserts), while finalRow[] gives your
code a preview of what the final row would look like in the database, if
the delta change was to be successfully applied – including all the
changed and unchanged fields.

CHAPTER 12: Business Rules Scripting 10

But Note: Since the full detail of the row is not included in the delta, a
request to the physical database is required in order to populate the
originalRow[] and finalRow[] values. As such, accessing these indexers
can be costly, and should be used with care, especially for tables where a
high volume of updates is expected.
if (change.isInsert || change.isUpdate)
{
 if (finalRow[“Country”] == “USA” & finalRow[“State”] == null)
 fail(“A state is required for addresses in the U.S.”);
}

The above code works reliably, because finalRow[] always gives access
to the full row. If the code used newValues[] instead, the check would be
unreliable, as the client app might have changed the “Country”, but not
the “State”, and newValues[] would have no information as to whether
the “State” field actually contains a value or not.
In addition to the use of the DeltaChange object, you might have noticed
that our script also contains a call to fail(). fail() is one of the global
methods provided by the Business Rules Scripting API, and it essentially
aborts the current method with an exception, which in turn causes the
Data Abstract framework to reject the change and return the error
message to the client. To the client, this will look the same as any other
failure (such as an error returned from the back-end database).
As you have seen in earlier chapters, the client can use this error to
present a proper UI and ask the user to correct the data to a valid format.

Working with Sessions

Relativity Server uses the concept of Sessions to maintain the identity of
a client between requests. For scalability reasons, multi-tier servers treat
every request individually, and Relativity Server doesn’t keep a dedicated
DataService instance around for each client. Instead, each request
received from a client will be served by a random available service
instance in order to keep a low memory profile. (This is a concept
discussed in more detail in Part Three.) The only thing tying individual
requests from the same client together is the Session.
You can think of a session as a collection of named values that the server
stores in a central location (possibly even shared by multiple physical
servers), identified by a Client ID (also known as a Session ID).

CHAPTER 2: A Simple Client	 11

The first time a client authenticates with Relativity Server, a new session
is created using the Client ID, a unique GUID transmitted from the client
(it is important to note that Client IDs are usually generated when the
client application starts, so each Cient ID uniquely identifies a particular
instance of the client application). Relativity Server stores a few relevant
pieces of information in the session (such as what domain the client
logged into, what username it logged in with, etc.), and this information is
then available for all future requests the server receives from the same
client (i.e. with the same Client ID), until the session expires – typically
after 20 minutes of inactivity.
In addition to Relativity-specific data, business rules scripts can also
store custom data inside the session, to preserve it from one request to
the next.
The first contact your script has with the session is in the afterLogin()
event, which you can implement on the schema level to get informed
when a new session was created and a new user logged in:
function afterLogin(userName, parameters)
{
 log("after login");
 log("user "+session[“Relativity.UserName”]);
 log(JSON.stringify(session.values));
 log("after login end");
}

The event handler above will print out the content of the freshly initialized
session to the server log:

[Screenshot pending some product changes, will be delivered later]
Figure 12-4: Server Log Showing Session Data

You will notice that all values set by Relativity Server start with a
“Relativity.” Prefix; these values are read-only, meaning your script can
evaluate them, but not change them. Your script is completely free to
store any values you see fit, without a prefix, as in the following sample:
function afterLogin(userName, parameters)
{
 session[“MyCustomValue”] = “Hello”;
 log(“Custom Value: “+session[“MyCustomValue”]);
 log(“User Name: “+session[“Relativity.Username”]);
 //session[“Relativity.Username”] = “Peter”; //this would fail
}

CHAPTER 12: Business Rules Scripting 12

The main reason to store custom values in the session is to preserve
information for future calls. For example, you might use the afterLogin()
event to perform a (maybe relatively costly) check to determine what
tables the authenticated user is allowed access and store a flag in the
session with the result. On subsequent requests, your scripts can just
check that flag in the session, for example in the
onValidateDataTableAccess:
function afterLogin(userID, parameters)
{
 if (session[“Relativity.Username”] == “admin”)
 session[“CanAccessEmployees”] = true;
}
…
function onValidateDataTableAccess(name, parameterNames, parameterValues,
currentAllowed)
{
 if (name = “Employees” & !session[“CanAccessEmployees”])
 fail(“You’re not allowed to access the Employees table.”);
}

The above sample is trivial (and in fact you might just as easily check
session[“Relativity.Username”] inside onValidateDataTableAccess()),
but you could imagine a more elaborate check that would, for example
look up a Permissions table from the database based on the value of
session[“Relativity.Username”]. In one of the projects we have worked
on in the past, we used the afterLogin() event to build a (complex)
“Dynamic Where” clause that specified which projects in a bug tracking
system the user had access to. This where clause was stored in the
session and later (within the beforeGetData() and
beforeProcessDeltaChange() events) appended to any queries received
from the client, in order to filter the Projects and Bugs the user could see.
In essence, this allowed us to dynamically adjust the business rules for
data access for each individual user.
Depending on the Login Provider your Domain is using (Login Providers
were discussed briefly in Chapter 10), there might be additional helpful
values stored in the session for you. For example, if you are using the
DbTableLoginProvider, it will automatically populate the “User.”
namespace within the session with all fields from the user’s record in the
database. For example, if your Users table looked like this:

CHAPTER 2: A Simple Client	 13

• ID
• Username
• Password
• IsAdmin

Figure 12-5: Users Table

you could use session[“User.IsAdmin”] to check that flag from within
the scripts, without needing to run any extra database requests.

Accessing Additional Data Using the Local Data
Adapter

In many cases, your business rules will need to rely on additional data
from the database that is not directly available via the session or via the
request that is currently being processed. For example, as we hinted at in
the previous section, you might need to query a Permissions table to
determine what sort of operations the current user is allowed to perform.
Or maybe you need to validate a change against different tables in the
database before allowing a delta to be processed. In our bug tracker
project, for example, we needed to check if a given Category was valid
for the Project a Bug was in – a check where a separate
ProjectCategories relation needed to be consulted for.
The scripting API provides an object for these sort of tasks, the Local
Data Adapter, available though the global lda variable. As the name
implies, the LDA is a close relative of the Remote Data Adapter we
already used on the client side, in Chapters 2 through 7. It provides much
of the same functionality – querying data and applying updates – except it
does this locally within the middle tier, rather than remotely from a client.
The most commonly used function of the LDA is selectSQL(), which
executes a DA SQL query against the schema and returns a recordset
with the resulting rows. For example, we could use
var users = lda.selectSQL(“SELECT * FROM Users”);

to retrieve the records in a Users table to work with locally. Or, given the
name of the currently logged user, we could request a list of permissions

CHAPTER 12: Business Rules Scripting 14

for that user (for example to check what operations we want to allow this
user to perform):
var permissions = lda.selectSQL('SELECT * FROM UserPermissions WHERE UserName =
@UserName”, { UserName: session[“Relativity.Username”] });

Note how this second call uses parameters, rather than directly putting
the UserID into the DA SQL. It is safe practice to never put external
values directly into a query using string concatenation, to avoid SQL
injection attacks (although we are fairly safe in this case, because we can
rely on session[“Relativity.Username”] to have a proper value and also,
DA SQL itself protects from SQL injection very well, since it does not
directly pass SQL through the database, and most SQL injection attacks
rely on SQL commands that DA SQL does not permit).
Once you have a result from selectSQL, you can loop over it to access
the individual rows, for example:
var clients = lda.selectSQL(“SELECT * FROM Clients”)
for (i = 0; i < clients.count; i++)
{
 var client = clients[i];
 log(clients[0]+”: “+clients[“ClientName”]);
}

As you can see, the select result exposes a count property, and acts as
an indexer letting you access rows 0 through count-1. Each row itself can
be indexed either by field name or field index to access the individual field
values; the above example would print out the ClientID (the first defined
field) and the ClientName of each client.
In addition to querying data, you can also use the LDA to make changes
to the database. The LDA exposes three functions for that, aptly named
insert(), update() and delete().
You can insert a new row to the Clients table like this:
lda.insert(“Clients”, { ClientName: “Peter Venkman” });

update a row like this:
lda.update(“Workers”, { WorkerID: 122 }, { WorkerLastName: “Frankie” });

and delete a row like this:
lda.delete(“Orders”, { OrderId: 1109 });

In all three cases, the first parameter to insert()/update()/delete() is
the name of the data table you want to change. The second (and in case

CHAPTER 2: A Simple Client	 15

of update(), third) parameter is an object containing name/value pairs for
field names and their values. For inserting a row, only one set of values is
needed, the new values to be inserted. For updates, the first object needs
to provide all the fields that make up the primary key (in our example just
the WorkerID) to identify the row, while the second provides all the fields
you want to update. Finally, for deleting a row, you once again need one
object with all the fields of the primary key to identify the row in question.
Just like when making changes to data tables on the client, calling
insert()/update()/detete() just creates local delta changes in memory.
It is not until you call lda.applyChanges(), that those changes actually get
applied to the database.
Of course, since you are writing scripts to create business logic that
reacts to “real” changes from a client, you will, in most cases, use
insert()/update()/detete() in combination with information received
from a client as part of a change request. For example, if we look back at
the beforeProcessDeltaChange() event we discussed earlier, we might
write:
//BeforeProcessDeltaChange() for Orders
function beforeProcessDeltaChange(delta, change, wasRefreshed, canRemove)
{
 if (change.isUpdate)
 {
 lda.insert(“OrderHistory”, { ID: newGuid(),
 OrderID = change.originalRow[“OrderId”],
 User: session[“Relativity.UserName”],
 Date: new Date() });
 lda.ApplyChanges();
 }
}

to record a history of all changes made to an order, in a separate
OrderHistory table. Note how we construct the new row partially from
new data (a new GUID and the current date) and partially from
information in the session and in the received delta change.

Inspecting Schema and Connection Meta Data

The scripting API also provides access to metadata about the domain it is
running in, including access to a list of defined connections, as well as to
all the schemas contained within the domain. These are available via the

CHAPTER 12: Business Rules Scripting 16

global connections and schemas variables, respectively. In addition, the
global schema variable lets your script directly access the current schema.
The following snippet prints a list of all connections and their types
(connection types were discussed in Chapter 10: Relativity Server and
Server Explorer):
for (i = 0; i < connections.count; i++)
{
 log(connections[i].name+" is of type "+connections[i].type);
}

For our sample domain, it will print out:
PCTrade is of type SQLite

The following, instead, prints out all the schemas, along with all the data
tables they contain and all their fields:
for (i = 0; i < schemas.count; i++)
{
 log("Schema name: "+schemas[i].name);
 for (k = 0; k < schemas[i].dataTables.count; k++)
 {
 log(" Data Table name: "+schemas[i].dataTables[k].name);
 for (m = 0; m < schemas[i].dataTables[k].fields.count; m++)
 {
 log(" Field name: "+schemas[i].dataTables[k].fields[m].name);
 }
 }
}

All metadata classes provide access to all the information that’s defined
in the schema itself. For example, you could write a generic script handler
that triggers for all tables in your schema and then checks the metadata
of the table (or its fields) for custom attributes or other information to
control what can be done. For example:
function onValidateDataTableAccess(name, parameterNames, parameterValues,
 currentAllowed)
{
 var requiredRole = schema.dataTables[name].customAttributes;
 if (requiredRole & !session.hasRole(requireRole))
 fail(“”Access to table “+name+” requires role “+requiredRole+”.”);
 return true; // else, allow access
}

In this example, the schema could contain the name of a role in the
custom attribute field of each data table, and, if present,
onValidateDataTableAccess() would ensure that this role is defined for

CHAPTER 2: A Simple Client	 17

the session, before allowing access. This way, access can be configured
for each table, without modifying the scripts every time.

Debugging Scripts

Compared to languages like C and Objective-C, JavaScript is a very
dynamic language, and as such it is difficult for Relativity Server to fully
verify a script “dry”, without actually running it. In strongly typed
languages, the compiler knows what types look like and what members
they expose, and can give you errors (or, as is the case with Objective-C,
warnings), if you are accessing members that do not or may not exist.
With JavaScript, this is not possible, because most objects your scripts
deal with will be dynamically created at runtime.
Nonetheless, Schema Modeler’s script editor provides a “Validate” button
that lets the server perform a basic set of validations to make sure your
script is ok, syntactically. But even a script that validates can still fail at
runtime, if you, say, mistyped an object member or variable name. And of
course, in addition to containing such errors, your script might also
contain more traditional bugs, i.e. be written to be formally correct, but
not behave the way you expect it to.
For that reason, it is important you test business rules scripts thoroughly
before deploying your server for production use, and make sure that
every code path is executed during your testing. For example, you might
have a code path that only gets executed when a client sends a certain
piece of bad data – if in your testing your client does not make this
mistake, your corresponding script code will not get tested, and might
therefore contain a bug that will come around to rear its ugly head much
later, once your system is in production. This is of course not good.
Because scripts run in Relativity Server, not locally in Schema Modeler,
debugging scripts can be tricky, and at the time of this writing, Relativity
and Schema Modeler do not yet provide a fully interactive debugging
environment where you could set breakpoints and step through scripts –
although the Data Abstract team is working on such a solution, and it
might in fact be available by the time you read this.
In the meantime, Relativity Server provides a couple of things that will
help you test and debug scripts. For one, there is the log() function that

CHAPTER 12: Business Rules Scripting 18

you can use in your scripts to send texts to the Server Log, which you
can then see in the Log node in Server Explorer, as shown in Figure 12-6.

Figure 12-6: The Server Log

In addition, there is a flag to “Enable Script Debugging” for a domain in
Relativity Server, available on the domains’s Setup page. While this does
not (yet) enable a full interactive debugging experience, as discussed
above, enabling this will cause the script engine to run with extra debug
information, and to, for example, report back exact error locations as part
of the exception that gets sent back to your client app when a script fails.

CHAPTER 2: A Simple Client	 19

Figiure 12-7: Enable Script Debugging

Summary

This chapter rounded off our coverage of creating middle-tier servers in
Relativity Server by looking at how Business Rules Scripting allows you to
define business logic and control data access with JavaScript.

